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A MECHANICS MODEL FOR THE COMPRESSIVE
RESPONSE OF FIBER REINFORCED COMPOSITES

I I. Chung f and Y. Weitsman 1 0

I

This article presents a model for the uni-axial compressive response of uni-

directionally reinforced fibrous composite. The model accounts for the non-linear shear

response and the failure strain of the matrix, incorporating both aspects into a non-linear field5 equation which governs the load-deflection process. In addition, the model considers the

effects of two kinds of geometric imperfections, namely, initial fiber waviness and random

fiber spacing. It is shown that under uni-axial compression random fiber spacing may

instigate the formation of severe transverse loadings on the fibers, which suggest the

existence of a transitional mechanism from micro-buckling to micro-kinking.

Computational results are presented which illuminate the effects of several material
and geometric factors on the compressive strength of composites.
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1. INTRODUCTION

The compressive behavior of composite materials has been studied extensively during

the past three decades and a review of literature on the subject is beyond the scope of this

I paper. Substantial listings of references on the subject can be found in the articles by Shuart

(1985), Camponeschi (1991), Guynn et al. (1992) and Piggott (1993). Suffices to say that

the compressive response of composites was found to depend on the properties and response

of the constituent materials and on the fiber volume fraction. As may be expected,

compressive strength is sensitive to imperfections.

The essential novel feature in the present work is the incorporation of random fiber

spacings, as commonly encountered in composites, into a model for their compressive

behavior. The main consequence of the foregoing feature is that it predicts a response which

involves the emergence of highly concentrated lateral forces on the fibers simultaneously3with micro-buckling. These lateral forces are a most likely cause for the development of

kinks. One of the outstanding issues regarding the compressive response of composites is

that the common methodology for predicting compressive failure stems from considerations
of buckling and stability, while most failed specimens exhibit localized kink bands which

span the thicknesses of the test coupons. It seems that all other models address micro-

buckling and micro-kinking exclusively of each other, and can thus be grouped accordingly:

(1) Models which consider buckling. These include the work of Rosen (1965),
I which seems to be the first article on compressive failure of composites. Considering "shear

-mode buckling" that model predicted a failure stress acm = Gm / (1 - Vf), where Gm is the

3 shear modulus of the matrix and Vf the fiber volume fraction. That prediction is inadequate

for two reasons: (a) it gives Ck which is several times higher than experimental values, (b)
the relation am -1/(1 - Vf) contradicts experimental observations which show that OCR

grows linearly with Vf (at least up to Vf - 0.55) (e.g. Piggott and Harris (1980), MorleyI (1987)).

Several modifications to Rosen's model were introduced subsequently. Primarily,

these modifications considered non-linear shear response of the matrix and initial fiber

waviness (e.g. Wang (1978), Lin and Zhang (1992), Guynn et al. (1992), Highsmith et al.

(1992) and others listed in the aforementioned review articles). Additional modifications

3 included the incorporation of fibers' shear-deformation, such as by Davis (1975), or the

accounting for large deformations of the fibers by Yin (1992). Though the latter model

3 stems from a buckling formulation, it is worth noting that it proposes a criterior for kink

formation, which occurs when fibers' curvature attains a critical value.
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(2) Models which consider the a-priori existence of kinks: These include works by
Evans and Adler (1978), Hahn and Williams (1986), and Budiansky and Fleck (1992).

The compressive response of multi-directionally reinforced laminates such as Shuart

(1989) and of cylindrical shells such as Blake and Starbuck (1993) is beyond the scope of

this article. Suffices to say that these complex circumstances activate various modes of
failure which do not occur in the uni-directional case considered herein.3 In all the above works the fiber reinforced composites were viewed as lamellar

regions which consist of fiber and matrix layers as shown in Figure la. It should be noted3 that several investigators (Sadowsky et al. (1967), Herrmann et al. (1967), Lanir and Fung
(1972) and Greszczuk (1975)) considered fibers of cylindrical geometry. All those works

assumed linear elastic behavior of fiber and matrix materials.

In addition to random fiber spacing the current model includes initial fiber waviness

and considers the non-linear shear stress-strain response in the matrix. The fibers are

assumed to deform in accordance with classical beam theory.

I
2. FORMLRLTION AND RESULTS

Consider a uni-axially reinforced composite which, following Rosen (1965), is
represented by a two-dimensional layered array as shown in Figure 1 (a). Let x and y denote
Cartesian coordinates in directions parallel and transverse to the layers, and designate by 2h

the thickness of a "fiber layer" centered within a composite layer of thickness 2c. Conse-

quently we have Vf = h/c and Vm = (c-h)/c, where Vf and Vm are fiber and matrix volume

fractions, respectively.
We focus attention on the "shear mode" of buckling (Rosen (1965), Garg et al.

1 (1973)), where all fibers buckle in phase. Then, following Rosen's premises (1965) for
high performance composite material systems, we assume that the external compressive load

N is borne entirely by the fiber region, which is modelled as a Bernoulli-Euler beam, while

the matrix responds in shear only. Consequently, we have the following familiar expression£i for yjý, the shear strain in the matrix:

Hi"=_2_ dy-f (1)
1-Vf dx

In equation (1) vf denotes the lateral displacement ( in the y-direction ) of the fiber. In view
of the assumption of Bemoulli-Euler theory, v., and thereby also ygý, depends only on x.

In addition, we consider a micro-buckling length L and and initial fiber waviness
v f0 (x) with periodicity of 2L. In the sequel, we let v f (x) = So cos (Wx/L), though this
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specific choice is not essential to our method. Finally, in anticipation of the circumstances

which emerge due to non-uniform fiber spacings, we denote by q(x) the distributed lateral

load on the fiber. See Figure 1(b).

U Considering non-linear shear response of the matrix, we write

3 = - Gm F (yfý) (2)

where the function F(yf,) expresses that non-linear shear behavior of the matrix

scaled by the initial shear modulus Gem.

The longitudinal strain in the fiber, eL, under the combined effects of compression

3] and bending is given by

f += [ddy+ 1 f + v- - -y (3)
2 L dx dx dx2

In equation (3), uf denotes the fiber displacement in the direction of x.

Consequently, the axial displacement at x = LI2 is given by

uf I f A _ _ = - +I (4)2 dx dx d 2 EA

As can be noted from equations (3) and (4) the hypothesis that fibers deform in-phase

"3 implies that uf and vf are common to all fibers regardless of their spacing. On the other hand,

equations (1) and (2) state that the support provided by the matrix varies with the fiber vol-

ume fraction Vf. These observations imply the existence of lateral loads, q = q(x), which

enforce a common, in-phase deformation of all fibers in the case of non-uniform spacing.

To emphasize their dependence of the spacing c, we shall write q = q(xc).

Consider an individual cell of width 2c. The principle of virtual work yields

-- a[ 8eI dVf + ' f 87y dVn - q(x,c) 8vf dx + N 8A = 0 (5)

Substitution of expressions (1)-(4) into equation (5) and employment of integrations by parts

yield the following field equation and boundary conditions for each individual cell:

1 4



Vf dx)+CL dq(xc) (6)

d-f=o, d&X3v= 0 at x=O
dx dx3 (7)Ivf =O0, d~vf-=o0 at xf=2L

dx 2  2

3 Note that in view of the non-linearity of F in its argument equation (6) is a non-linear

differential equation for vf.

Turning to the case of random fiber spacing, let p(c) denote the probability density of

the cell dimension 2c. Obviously

f'p(c) dc = 1 (8)

In the present circumstance the principle of virtual work gives

jp(c)(Jt e8 edVf+f zVyflrdVm-f q(xc) 8vfdx+ N SA dc=0 (9)

Furthermore, in the absence of external lateral loads, equilibrium in the direction of y

Ifh p(C) (f q(x~c) dx) dc = 0 (10)

I Integration-by-parts of equation (9), upon expressing all variations in terms of 8(dX!) gives
ýdx'

the following field equation for vf

EIP3 f- 2cp(c) G Fm A F'j A) dc+N (&'+d)=0d (11)

I
I
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The boundary conditions for the case of randomly spaced fiber remain the same as those

given in equations (7).*
It is advantageous to further reduce the order of the differential equation given in (11)

and express it in a non-dimensional form in terms of the following non-dimensional

Iparameters:
X = IL y= dy! E £= 82- (12)

In addition, the probability distribution function p(c) can be converted to a probability

3 ciistribution function p (V).

In view of expressions (12), the non-dimensional form of Equation (11) reads

d p(Vt) a2 (I-Vf) F dVf + X2Y = -X2Y (13)

I where (X2  J 6l-V)

-2- 2h GemL2  X2 , Y =-Ex sin xX (14)
Vf(1-Vf) Elf ' Elf

The boundary conditions which accompany the second order non-linear differential equation

(13) are

SY(O) = 0, M(j = 0 (15)

In the case of uniform fiber spacing equation (13) reduces to

.-d!- a2(l-Vf) F (---) + Y--2y 3Yo (16)"" ~~dX2 -V

Note that for the linearly elastic case with uniformly spaced fibers F(Y/(l - Vf)) = Y/(l-Vf)

3 and equation (16) takes tho-. simple form

5 d _ a 2 y + 2= -X2yo

dX
2

!I
i * In view of equation (10) it was possible to derive differential equation (11) which is one order lower than

that given in equation (6). The lower order equation (11) enables the detemnination of the lateral displacement
vf to within a rigid translation, which is of no relevance to the failure mechanisms considered in this work.
An additional integration of expression (11) with respect to x, further reduces the order of the differential3 equation, leading to a solution which incorporates an indeterminate rigid body rotation.
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with the solution

X2- X2 
- a2

This corresponds to the buckling load predicted by Rosen (1965), namely X2 = X2 + X2.

Note that the above result assumed that the magnitude of the linearly elastic shear strain in the

matrix is not limited by any ultimate or plastic level.

However, if one considers a linearly elastic matrix response followed by an ideally1 plastic deformation at ypy - yp, then plastic yield begins at X = 1/2 and the onset of plastic

deformation is found to occur at

)L2 = (X2 + a 2) (1-Vf)YP f 2(p) (17)
EX + (1-Vf)Yp

The above result agrees with the value obtained by Steif (1988) for the slippage initiation

I load, beyond which the matrix no longer supports the deformed fibers.

Case 1: Uniformly Spaced Fibers with Bi-finear Shear Modulus of the Matrix

Consider a bilinear shear stress-strain response of the matrix material, given by the

following expression for F(f)fy)

i(Gm (xy_ - yy) + Ge yy if yxy > yy
GemF(yxy))= Gemyxy if -y < 'Yxy<Y'yy (18)

Gmp(Gyxy( +y)- Gyy if yxy< - y

I In equation (18) I'y is the strain level where the slope of the bi-linear stress-strain diagram
changes from an initial value Gel to the strain-hardening value Gmp. It will be shown in this

I section that the buckling associated with the response expressed in equations (18) can be

handled analytically.

I For loads that correspond to X2 which exceeds X2(Cy) in equation (17) the shear

response of the matrix will follow the Ii-linear stress-strain relation over a region 4<X<1/2,

but will still remain linearly elastic within the central region O<X<k. Obviously t decreases

with increasing X2. Substitution of expressions (18) into equation (16) gives

I
I
1 7



I ~ ~~da_ U y +)2y. _ 2yo t 0dX2 a(19)

d2Y _ aj y + X.2Y --- 2yo _ 02 at < X <2]-

dX2  2

where a. and ap defined according to (14) with shear moduli Gem and GI, respectively, and

p2 2h (Gmt- GYP)L2,,y,p2 = Vf(l-Vf) Elf

The boundary and continuity conditions associated with equations (19) are

II- =0, Y(0) =0, Y(4+) = yq) M(+ = Y(4) =-VmYy (20)

The above conditions correspond, respectively, to the vanishing of the moment at x=I.2, and

of the shear at x=0, the continuity of shear and moment at x=4L and the requirement that, by

hypothesis, I y5 I = yy at x=IL. The five conditions given in equations (20) determine the

four unknowns associated with the two second order differential equations (19), as well as
the yet unknown location 1.

Note that the solution for Y determines the displacement vf to within arbitrary rigid

translations and rotations, which are determined from the requirement of continuity of vf and

dX at x=: as well as vf(0) = 0 and 4 = 0 at xI24.

The solution to equations (19) reads:

for 0<X<4

I sinh rX J X.2 sin x4 + (1-Vf)yy + Ex;'2 sin xX (21).C =-sinhrWA ),2_- 72_Mj )•2_X2_-ai

for 4<X<1/2 and ;2 < aj

cos, r(I-2X)/2 I X;L2 sin 4 + (l-Vf)yy - (22a)I COS = p(1-24)/2 C2 - 01 ;L2 a$

8



+ eX•2 -X -a sin xXX- p2

while for <X<1/2 andX2 >a

I Y+X)= cosh( 2(l_2X)/2 L 2 sin_ -+-(-Vf)y - (22b)
cosh icp(I-2X)/ ;L '2 -i X2 - (C-4~ ;2

+ ; .2LE sin xX - 12 P

In the above equations , = "F'i- ;2 and icp = _I" ;L21.

Equations (21) and (22) match all the conditions (20) except the continuity •Y~( +) :

AM 
dX

_-(X'). The latter condition yields a characteristic equation, upon differentiation of
dX
equations (21) and (22), which relates the position of 4 to the load parameter X2. This

characteristic equation must be solved numerically, with the physically meaningful solution
corresponding to the lowest value of X2.

o In our computations we utilized the constituent properties reported by Guynn et al.
(1992) for AS4/PEEK at 21" C. Accordingly, we took Ef- 67 GPa, L = 330 Pm and 8o =

1.65 pm and Vf = 0.6. For purposes of comparison we also considered additional values of

Vf in the sequel The non-linear shear stress-strain response was approximated by a bi-linear
relationship with Gme = 1.3 GPa, Gm = 0.33 GPa and yy = 4.2%.

The resulting stress-deflection curves are shown in Figure 2 for various values of Vf.

The symbols "+" on those curves correspond to load and displacement values at onset of

departure from linearity in the shear stress-strain response of the matrix. Such departure
occurs when I yy I = yy at X = 1/2. Note that when Vf = 0.9 the composite can carry com-

pressive loads which exceed the level which cause departure from linear matrix response.
However, for Vf = 0.3 and Vf = 0.6 the stress-deflection curves exhibit the so called "finite

disturbance buckling behavior," resembling the buckling of cylindrical shells under uniaxial
compression or spherical shells under external pressure (Simitses (1976)). It is interesting to
note that for Vf = 0.3 and Vf = 0.6 the cusps in the stress-deflection curves, which
correspond to maximal load levels prior to buckling, occur at magnitudes just above those
which cause I dy I = yy at X=1/2. It is obvious that the theoretically predicted cusps for Vf=

9



0.3 and 0.6 cannot be realized experimentally. Under load controlled tests the maximal loads
will be followed by total collapse and under displacement controlled circumstances the
specimen would snap through to the lower load levels along the vertical dashed lines shown

in Figure 2.

Further insight into the compressive response predicted by the solution to equations

(19) and (20) is provided in Figures 3 and 4. The dimensionless length ('=1/2 - • ) of the

regions where the matrix shear strain I fyý I exce•ds the linear elastic limit yy is plotted vs.
the applied compressive stress ac in Figure 3 for fiber volume fractions Vf = 0.3, 0.6 and

0.9. Note that cc increases monotonically with 4 for Vf = 0.9, but decreases (after very

slight initial amplifications ) for Vf = 0.3 and 0.6.
1The variation of the matrix shear strain yf with the dimensionless distance X along

the fiber/matrix interfaces is shown in Figure 4 for Vf = 0.6. The four curves in that figure
correspond to distinct levels of non-dimensional load X. The top curve, with X = 23.10

represents typical linear elastic results, with I ¥q I < Yy for all X and thereby also - 0. In
this case we obtain a sinusoidal variation of yf which agrees with earlier results (Wang

(1978), Lin and Mhang (1992)), namely yk'y = A sinrX with A = EucX 2 / [(l-Vf)(X2 -x 2 -(C2 )].

The foregoing sinusoidal variation persists until the onset of inelastic response at X=1/2
which occurs at X, = Xy = 30.79. This result is shown by the dashed line in Figure 4. The

maximal value of the compressive load, associated with X = X.. = 30.81, corresponds to an

inelastic zone of dimensionless length = 0.05. In this case the variation of y'y with X,

shown by the dotted line in Figure 4, is no longer sinusoidal. Beyond • = 0.05 values of X

decrease while AIL increase according to Figure 2. A typical circumstance, corresponding to

- 0.1 and X. = 30.23, is shown by the solid line in Figure 4.

Case 2: Non-Uniformly Spaced Fibers

Statistical Considerations of Cell-Size Distributions

As noted in the Introduction, non-uniformity in fiber spacing introduces a new aspect
into the compressive and buckling behavior of fiber reinforced composites, namely

transverse internal lateral loads associated with the common deformation of the fibers.
Following the statistics of spatially distributed data and the concept of Voronoi cell

tessellation, as employed to represent the spatial distribution of spherical and cylindrical
inclusions (Davy and Guild (1988)), we assume a cumulative distribution function for the

cell size 2c described by a Poisson's point process

P (C > c) = exp (- 21Lc) (23)

10



I

- In equationL (23) g± is the frequency of Voronoi cells in a unit length, with a mean cell size of

VI-. The above consideration is subject to the restriction that fiber regions cannot overlap,

namely c > h ("Gibbs hard core process"). Therefore equation (23) is modified to read

3P(C >c) =exp (- 2gL(c -h)) (24)

5 Since VI-I is still the expected value of the Voronoi cell size, namely,

3 I-1 = E(2c) =-f2c P (C > c) dc

3 one obtains

1 - 2gh (25)I
Equations (23) - (25) can be expressed in terms of the fiber volume fraction Vf, as employed
in equation (13). Let Vf denote the average ("nominal") value of the fiber volume fraction

and 2Z = Wt- 1 the average length of the Voronoi cells, then Vf = h/i-= 2hg.j. Consequently,

we have
it= Vf ,

3 2h(1- V)

a 
P(C>c)=exp [.-Y.• •.V - I)]

I
Therefore, the cumulative probability that the fiber volume fraction Vf exceeds a value Vf is

P ( > V)- 1 - P (C > c)=- 1 - p - -- )] (26)

The probability density distribution which corresponds to equation (26) is
-(Vf) =--A-d- (Vf>vd Vf = -Lx[ V [L-1](7

dVf 1Vf V2 exp (27)

I II



Computational results for P (Vf) vs. Vf are shown in Figure 5 for three nominal (average)

I values of Vt (Vf - 0.3, 0.6, and 0.9).

T'he Cmom~esive Re=_=nns with Randomly Spaced Fibers

The probability density P (Vf) given in equation (27) was incorporated into the formu-

lation expressed in equations (11) and (13) and employed to predict the compressive5 response of Gr/PEEK (APC-2) composite with Vf = 0.6 at a temperature of T = 21C.
Based upon the data of Guynn et al. (1992), the nonlinear shear behavior of the PEEK resin

3 was fitted by a Ramberg-Osgood expression

* + ( -)/ (28)

5 where Gem = 1.3 GPa as in the previous section, A = 94.4 MPa and n = 0.12. In addition,
we took e = 8o/L = 1/200 as before and assumed, somewhat arbitrarily, resin failure to occur

at yf = yu = 10%. The latter assumptien was guided by the observed tensile failure at

eu - 4%-5% for PEEK at room temperature reported by Johnston et al. (1991). The shear
stress-strain response considered in the foregoing representation is shown in Figure 6.

The solution to equation (13), with Y(0) = 0, 2 --0, together with (27) and (28)

5 was obtained numerically. Note that equation (28) was supplemented by 'y = 0 for Iyry I >

Yu. To implement the numerical solution, the field equation (13) was expressed by finite
differences as given by Na (1979), and solved iteratively by a quasi-linearization method.

In the above implementation, the probability distribution function of the Voronoi
cells, (Vf), was evaluated at 100 equally spaced, discrete values of Vf varying between Vf =3 0 and Vf = 1.0. With the exception of Figures 12 and 13, all computations were performt i
for Vf = 0.6.

SFurther details of the numerical schemes are given in the Appendix.

Upon attaining convergence to a prescribed degree of accuracy, the computational
program gives the values of vf, Y, Y' and Y, as well as the shortening of the column A.

Results for the non-dimensionalized lateral deflection vA/L and for the slope Y vs. X are
shown in Figures 7 and 8 for three values of non-dimensional compressive loads X, namely

X = 10, 20 and 26.4. The latter value corresponds to the buckling load, since no equilibrium
configuration could be computed for X>26.4. The variation of ¥•, the shear strain in the3 matrix, vs. the distance X at X=26.4 is shown by the solid line in Figure 9. This variation is

contrasted with the variation of yqý vs. X for uniformly spaced fibers at the same load level,

* 12



I

as shown by the dashed line, and against the variation of fyl vs. X for uniformly spaced

i fibers at ).=29.5, which is the maximal load level attained in the uniformly spaced case, as

shown by the dotted line. All the plots in Figure 9 correspond to Vf = 0.6 (in the case of

random spacing Vf = 0.6 and the results are plotted for the cell with Vf = 0.6).

5 Substitution of the numerically obtained solution for vf into equation (6) determines

the lateral load q(x) for each Voronoi cell, as specified by its fiber volume fraction Vf.I Results for q vs. the non-dimensional distance X = x/L am shown in Figure 10 for a typical
"matrix rich" cell, with Vt - 0.25, at load levels corresponding to X = 10, 20 and the buck-

I ling value X = 26.4. Similar plots are shown in Figure 11 for a "matrix poor" Voronoi cell,

with Vf = 0.95. Note that sufficiently low levels of X, i.e. X = 10, yield small values of lat-

end load q, while increasing levels of X raise the magnitude of q. It is especially interesting

to note the "spikes" in the plots of q vs. X. These localized amplifications occur at places
where yv attains its ultimate value 'yu at some Voronoi cell, with the sharpest spike located

I near the place where Iyý, I = yu at the Voronoi cell under consideration. For instance, the
spikes in q(X) for X = 20 in Figure 10 occur at X = 0.15 and X = 0.3, which are the loca-

Stions where y I = yu at the Voronoi cells of fiber volume fractions Vf = 0.99 and Vf =
0.98, respectively, at X = 20. (Obviously, the matrix material in those cells failed over the

' ranges of 0.15 < X < 0.5 and 0.3 < X <0.5, respectively). On the other hand, the sharp
spike at X = 0.25 for X = 26.4 in Figure 11 is associated with yf' attaining its ultimate value

yu within the very same Voronoi cell (with Vf = 0.95) considered in that figure, while the
remaining peaks are associated with shear failures in other cells. Peaks which occur at loca-
tions X < 0.25 are due to failures in cells with values of Vf > 0.95, while spikes located at X£ > 0.25 are due to failures within more resin-rich Voronoi cells.t

Comparison between Figures 10 and 11 shows that resin-rich Voronoi cells are sub-

Sjected to relatively lower lateral loads. This observation is attributable to the fact that the

above mentioned cells sustain shear strains yry of comparatively smaller magnitudes.

Predicted axial-stress axial-strain relations and compressive strengths under mono-
tonically increasing compressive loads are illustrated in Figure 12 for various values of Vf.
The continuous lines, terminating at points which corresponds to failure, correspond to

uniformly spaced fibers, while symbols represent computational results for the case of

tlt may seem that lateral equilibrium is not satisfied for the individual Voronoi cells since J q(X)dX * 0 in

the plots shown in Figures 10 and 11. However, due to symmetry about X = 0 and X = 0.5, q(X)dX

* indeed vanishes.
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randomly spaced Voronoi cells with filled symbols representing failure. The stress-strain

responses shown in Figure 12 are dominated by the last term on the right side of equation (4)

and thus remain nearly linear until failure. In Figure 13, predicted levels of compressive

strength are plotted versus fiber volume fraction, Vf, for uniformly and randomly spaced

3 fibers. Note that random spacings yield lower values of compressive strength and suggest a
linear relation between strength and Vf, which accords with experimentally observed trends

5 by Piggott and Haris (1980).

Figures 14 (a, b) exhibit plots of fiber curvatures versus non-dimensional distance X

at various levels of non-dimensional compressive load X. Note the significant increase in

curvature for the randomly spaced case (Figure 14 (b)), as compared with the uniformly

spaced case (Figure 14 (a)). If, according to Yin (1992), kinks occur when fibers' curvature

attains a critical value, then Figures 14 suggest that random spacing yield kinks at lower load

levels.
3vsUnlike the circumstance of uniformly spaced fibers with bi-linear shear response of

the matrix, the computational scheme for randomly spaced fibers cannot be extended to pre-

3 dict post-buckling behavior such as shown in Figure 2. The specific values of the computed

compressive failure stresses are listed in Table 1. That Table exhibits the effects of the

nominal volume fraction Vf, the amplitude of geometric imperfection 8jL, and the presence

or absence of an ultimate value of matrix shear swain yu. The Table also illuminates the effect

of random fiber spacing.

3. CONCLUDING REMARKS5 This article presented a mechanics model for the compressive response and failure of

uni-directionally reinforced polymeric composites loaded parallel to the fiber direction. The

model accounted for the non-linear shear response of the resin, including its ultimate shear

strain, and incorporated two kinds of geometric imperfections, namely, initial fiber waviness

and random fiber spacings. Heretofore, the latter kind of imperfection has not been

considered elsewhere.

The non-linear response of the matrix was accounted for by means of the non-linear

3 field equation (6) for the lateral displacement vf. In general, the above equation could be

solved numerically up to failure. Nevertheless, in some special circumstances, it was

Spossible to generate a solution into the post buckling range.

Both kinds of geometric imperfections, initial fiber waviness and random fiber spac-

ings, were shown to substantially reduce the compressive strength of the composite. How-

ever, random fiber spacings, when combined with the foregoing non-linear shear response

g of the matrix, was shown to introduce imbalances in the support furnished by the matrix

3 14



I
against fiber microbuckling - resulting in highly localized internal transverse loads on the
fibers. The emergence of these transverse loads alludes to the possibility of transition from

microbuckling to microkinking of the deformed fibers. However, it is impossible to explore

this matter any further within the context of the Bemoulli-Euler beam theory utilized in the

present article since this theory cannot account for discontinuous shear deformations within
the fibers. Such discontinuities are likely to occur at locations where the matrix reaches its

I ultimate strength and ceases to support the fibers, and the highly concentrated transverse
loads predicted by the present analysis reflect the indeterminacy inherent in the Bernoulli-

Euler theory !n addressing shear response.
A remedy to the above inadequacy may be found by emplo, shear-deformation

models, such as the Timoshenko beam theory, to represent the resp If the fibers. This

approach was employed recently by Chung and Weitsman (1993), where it was shown that

random fiber spacing indeed causes discontinuities in the shear strains within the fibers

These discontinuities indicate the emergence of kinks.
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Uniform Spacing Random Spacing

vYu8o/L Yu -o.1 YU =. 0 Y =0.1

0.0025 1360 1360 1381 1292

3 0.3 0.0050 1103 1103 1116 1029

1 0.0075 941 941 947 867

5 0.0025 2023 2023 2144 1746

0.6 0.0050 1541 1541 1583 1234

U 0.0075 1253 1253 1281 969

0.0025 4228 4228 4228 2927

0.9 0.0050 2702 2702 2685 1700

1 0.0075 2023 2023 2023 1194

3 Table 1. Comparison of Failure Strength (MPa)
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APPENDDIX THE NUMERICALSCHEM

I The nonlinear second order differential equation (13) can be expressed as

Y" = Q(X,Y) (al)

where the prime denotes derivatives with respect to X, and

I Q(XY) ffi p(Vf) X2 (Vf) (1-Vo F(-I.V d~ f- • 2y _

SAn error quantity at i teration step is defined as
* •i) = Y-0,i) - Q(X,y(i))

3 Consequently, upon employing a Taylor series expansion, the subsequent error quantity is

given by

0I 0•i~ )_- i+ 1 (A_)()yo+l)- y(i)) +I 0-V Vi, y..(i+l) -y.'(i)) (2

a -Y +a tY-" -Ia2

Noting that and =, we obtain, upon imposing 0(i) 0 ') =Oin

3 equation (a2) y.(i+l) aQ 0 ))0)

-W)OY0/ = Q(X,Y(i)) - (Y) / i (03)

I Expression (a3) is a linear ordinary differential equation for y(i+1) involving the known

results of the previous iteration y(i). Note that the derivative of Q with respect to Y is

3 - (Vr) a2(Vf) F *j'V-) dVf- A2

Furthermore, upon employment of the Ramberg-Osgood model, we have3
F'= 1I+ Gim (, (1-n)

Obviously, the boundary conditions in equation (15) must be satisfied in every iteration step.

The linear differential equation (a3) is solved by a finite difference scheme as
follows. Divide the abscissa 0<X<l into N equal intervals of length h=f/N. Then at each3 node XfXn=nh the second derivative Y" is expressed as

Y"n = h' (Yn+I- 2Yn + Yn-1)

* 18



a
Using the above relation, equation (a3) can be converted to an algebraic equation of

3 the form
1) + bn'+ly'i1 l + - (a4)

n-i+ I ~ f

3Here,

! (n'÷)-= h2 (IQ(Xn-'Y) -2

The boundary conditions in finite difference scheme are Y(•÷t) _0 and 'Y(t) +

3 The system of equations (a4) can be represented as

A(i+I)Y(i+l) = S0+I) (a5)

3 where

I
b(i'+l) 0i(iI

1 0 y(i+l )1 i+1)1b+)1 b"' b(i.)1 Q+1)/ (•l

SAI+) b b3 y(i+1) S(i+I) =

0 0 2 4+ y(i+ IN+,,

i Equation (aS) can be solved by means of the LU decomposition (Na, 1979). Accordingly,

the matrix A(i+1) is decomposed into the product +1) =L(i+t)u(i~l).

Here,

I
- il)0 - j i' 0

+ 1 +)-)

0)1 ".i )

L 0 2 W+1)_ 0 1
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I

and I I(1 111
i(i+1)y(i+1) = 1 ( n = 1,2... N-i)

00(+1) = b�÷') -_y(i+ (n = 2,3...N-1)

W O+1) = b+') - 2y .-+)

Denoting
=zi+l) = u(i+l) y(i+l) (a6)

equation (a5) is transformed to L(i+I)Z(i+l) - S(iO+), where the components of Z(i+1) am

n computed by- i+1) -=(i 1),8(+) /p'

I ,+') =j(i+,,) - 4+.))/ 0(+) (n = 2,3...N-1)

g+'1) = (•,+)- 2,•.1,)/ ,)

3 The recursive relations between Z4+t1 's and Yni~l"s are obtained from equation (a6) as

iy•+1) ) -- 7 +1)y(i~) (n= N-1,N-2,...,1)

The values of Yi+l) express the solution to equation (13) at the (i+l)th iterative step. When3N
y n 5 attains a constant value within a prescribed tolerance, the iteration is halted

ni=1

and post-processed to compute deflection, shear strain and stress, lateral stress and other

quantities.

I3
S
I
I
I
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i Figure 1. (a) A fiber composite modelled as a two dimensional lamellar region
consisting of fiber and matrix plates; (b) a deformed single cell.

I Figure 2. The scaled compressive displacement A/L at X=0.5 vs. applied compressive

stress o© for various fiber volume fractions Vf (symbol "+" corresponds to

Ithecrusance offr Yy).
Figure 3. The dimensionless length, • = 0.5 - 4, of the inelastic zone of matrix shear

i response (hi', > Yy in equation (18)) vs. applied compressive stress for Vf
= 0.3, 0.6 and 0.9.

i Figure 4. The variation of the matrix shear strain yqn vs. the non-dimensionalized
distance X along the fiber/matrix interface at several values of non-
dimensionalized applied compressive stress X. Fiber volume fraction Vf =

0.6. Onset of departure from linear elastic matrix shear response at X = X =
30.79, maximum compressive stress at X = X.. = 30.81.

i Figure 5. Distribution of local fiber volume fraction for randomly spaced fiber
composites with average fiber volume fraction, Vf, of 0.3, 0.6 and 0.9.

Figure 6. Shear constitutive relation of PEEK at 21'C based on Guynn's (1992)
estimation with shear failure strain assumed at 10%.

Figure 7. Non-dimensionalized deflection, vf/L, vs. X for randomly spaced fiber
composite with Vf = 0.6, under compressive loads corresponding to X = 10,
20 and 26.4. Failure shear strain Yu is 10%, and X = 26.4 is the compressive
strength of the composite.

Figure 8. Solution Y of the governing equation for randomly spaced fiber composite
with Vf = 0.6, under compressive loads corresponding to X = 10, 20 and

26.4. Failure shear strain yu is 10%, and X = 26.4 is the compressive
strength of the composite.

Figure 9. Comparison between the matrix shear strain within the Voronoi cell with Vf=
0.6 in randomly spaced fiber composite under its failure load X = 26.4 and
the matrix shear strain for uniformly spaced fiber composite under the same
load level as well as with its own failure load X = 29.5. Vf is 0.6 for both
cases (RS and US designate randomly and uniformly spaced fiber composite,
respectively).
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Figure 10. Lateral stress q(X) vs. X on a Voronoi cell with Vf = 0.25 in randomly
spaced fiber composite with Vf = 0.6 at various levels of non-dimensional

compressive loads X. The load X = 26.4 corresponds to the failure strength
of the composite.

Figure 11. Lateral stress q(X) vs. X on a Voronoi cell with Vf = 0.95 in randomly
spaced fiber composite with Vt = 0.6 at various levels of non-dimensional
compressive loads X. The load X = 26.4 corresponds to the failure strength
of the composite.

Figure 12. Dimensionless displacement -A/l at X=0.5 vs. applied compressive stress.
(Solid lines are for uniformly spaced fiber composite. Symbols are for
randomly spaced fiber composite. The ends of lines and the filled symbols
indicate compressive failure strength for uniform and random spacings,I respectively.)

Figure 13. Compressive strengths of uniformly and randomly spaced fiber composites
vs. fiber volume fraction.

Figure 14. Pre-buckling Curvature of fiber layer in the case of (a) Uniformly spaced
fiber composite and (b) Randomly spaced fiber composite. In both cases V1
= 0.6.
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Figure 1. (a) A fiber reinforced composite modelled as a two dimensional

lamellar region consisting of fiber and matrix plates; (b) a deformed single cell.

I
I
I
I
[
I
1

[ 23



I

I 4000-

I0.3000- V1 -0.9

SI
S2000-

1000-

0 2 ... 6' ' I ' " T I ... I 1''10

-ALL(%)

Figure 2. The scaled compressive displacement A/L at X=0.5 vs.
applied compressive sumtres o for various fiber volume fractions Vf
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Figure 3. The dimensionless length, 0.5 - of the inelastic zone

of matrix shear response (%'• >Yy in equation (18)) vs.
applied compressive stress for Vf = 0.3, 0.6 and 0.9.
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Figure 4. The variation of the matrix shear strain yR, vs. the non-dimensionalized
distance X along the fiber/matrix interface at several values of

non-dimensionalized applied compressive stress X. Fiber volume fraction Vf = 0.6.3Onset of departure from linear elastic matrix shear response at X = = 30.79,
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Figure 5. Distribution of local fiber volume fraction for randomly spaced
fiber composites with average fiber volume fraction, Vf, of 0.3, 0.6 and 0.9.
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Figure 8. Solution Y of the governing equation for randomly spaced fiber composite

with Vf = 0.6, under compressive loads corresponding to X = 10, 20 and 26.4.

Failure shear strain y, is 10%, and X = 26.4 is the compressive strength of the composite.

X- 26.4! -1 *' %.% % (FRSatFaikjreload) I

I *0

CO -4 X- 29.5
(US at Faikn bad) ",

-5. .... ...... I .... .... ....

0 0.1 0.2 0.3 0.4 0.5

Figure 9. Comparison between the matrix shear strain of the Voronoi cell with5 Vf = 0.6 in randomly spaced fiber composite under its failure load X = 26.4 and
the matrix shear strain for uniformly spaced fiber composite under the same load

level as well as with its own failure load X = 29.5. Vf is 0.6 for both cases
(RS and US designate randomly and uniformly spaced fiber composite, respectively).
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IFigure 10. Lateral stress q(X) vs. X on a Voronoi cell with Yf = 0.25 in randomly

spaced fiber composite with -Vf =f 0.6 at various levels of non-dimensional compressive
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Figure 11. Lateral stress q(X) vs. X on a Voronoi cell with Vf = 0.95 in randomly
spaced fiber composite with Vf = 0.6 at various levels of non-dimensional compressive

loads k. The load X = 26.4 corresponds to the failure strength of the composite.
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3 Figure 12. Dimensionless displacement -AIL at X=0.5 vs. applied compressive

stress. (Solid lines are for uniformly spaced fiber composite. Symbols are for
randomly spaced fiber composite. The ends of lines and the filled symbols

indicate compressive failure strength for uniform and random spacings, respectively.)
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IFigure 13. Compressive strengths of uniformly and

randomly spaced fiber composites vs. fiber volume fraction.
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Figure 14. Pre-buckling Curvature of fiber layer in the case of (a) Uniformly spacedI fiber composite and (b) Randomly spaced fiber composite. In both cases Vf 0.6.
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